Return to search

Recurrent Neural Networks with Elastic Time Context in Language Modeling / Recurrent Neural Networks with Elastic Time Context in Language Modeling

Tato zpráva popisuje  experimentální práci na statistické jazykovém modelování pomocí rekurentních neuronových sítí (RNN). Je zde předložen důkladný přehled dosud publikovaných prací, následovaný popisem algoritmů pro trénování příslušných modelů. Většina z popsaných technik byla implementována ve vlastním nástroji, založeném na knihovně Theano. Byla provedena rozsáhlá sada experimentů s modelem Jednoduché rekurentní sítě (SRN), která odhalila některé jejich dosud nepublikované vlastnosti. Při statické evaluaci modelu byly dosažené výsledky relativně cca. o 2.7 % horší, než nejlepší publikované výsledky. V případě dynamické evaluace však bylo dosaženo relativního zlepšení o 1 %. Dále bylo experimentováno i s modelem Strukturně omezené rekurentní sítě, ale ten se nepodařilo natrénovat k předpokládáným výkonům. Konečně bylo navrženo rozšíření SRN, pojmenované Náhodně prořidlá rekurentní neuronová síť. Experimentálně bylo potvrzeno, že RS-RNN dosahuje lepších výsledků v učení vlastního trénovacího korpusu a kombinace několika RS-RNN modelů přináší o 30 % větší zlepšení než kombinace stejného počtu SRN.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255481
Date January 2016
CreatorsBeneš, Karel
ContributorsVeselý, Karel, Hannemann, Mirko
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageUnknown
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0136 seconds