This report assesses different machine learning models’accuracies to predict whether a stock will go up or down invalue in a short term. The models that is used is linear regression,LSTM and Elman RNN. These models was trained on historicalprice data from the Nasdaq Stock Exchange. The idea that thereexist a relationship of the price movement of a stock and its futurevalue is called ’techncial analysis’. The result shows that neitherLSTM nor Elman RNN provides any statistical significance ofits accuracy for any of the implementations. Linear regression,provides a significant accuracy for longer time series predictionof the price when trained on 100 days of data and prediction ofits movement after five more days. / I denna report undersöks olika maskininlärningsmodeller noggrannhet för att förutspå om en aktie kommer att gå upp eller ner i värde på kort sikt. De evaluerade maskininlärningsmodellernamodellerna är följande: linjär regression, LSTM och Elman RNN. Dessa modeller tränades med hjälp av historisk prisdata från Nasdaq Stock Exchange. Ide´en om att det finns ett samband mellan prisrörelsen av en aktie och dess kortsiktiga framtida värde är benämnt som ’teknisk analys’. Resultaten visar att varken LSTM eller Elman RNN förmedlar en noggrannhet med statistisk signifikans för någon av de anänvda implementationerna. Linjär regression förmedlar en statistisk signikant noggrannhet för längre tidserie förutsägelser med träningsdata om 100 dagar och förutsägelse av aktiens rörelse efter fem fler dagar. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-322722 |
Date | January 2022 |
Creators | Rahm, Olov, Wikström, Alexander |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:132 |
Page generated in 0.0015 seconds