Return to search

Real-time Prediction of Dynamic Systems Based on Computer Modeling

This dissertation proposes a novel computer modeling (DTFLOP modeling) technique to predict the real-time behavior of dynamic systems. The proposed DTFLOP modeling classifies the computation into the sequential computation, which is conducted on the CPU, and the parallel computation, which is performed on the GPU and formulates the data transmission between the CPU and the GPU using the parameters of the memory access speed and the floating point operations to be carried out on the CPU and the GPU by relating the calculation rate respectively. With the help of the proposed DTFLOP modeling it is possible to estimate the time cost for computing the model that represents a dynamic system given a certain computer. The proposed DTFLOP modeling can be utilized as a general method to analyze the computation of a model related to a dynamic system and two real life systems are selected to demonstrate its performance, the cooperative autonomous vehicle system and the full-field measurement system.

For the cooperative autonomous vehicle system a novel parallel grid-based RBE technique is firstly proposed. The formulations are derived by identifying the parallel computation in the prediction and correction processes of the RBE. A belief fusion technique, which fuses not only the observation information but also the target motion information, has hen been proposed. The proposed DTFLOP modeling is validated using the proposed parallel grid-based RBE technique with the GPU implementation by comparing the estimated time cost with the actual time cost of the parallel grid-based RBE. The superiority of the proposed parallel grid-based RBE technique is investigated by a number of numerical examples in comparison with the conventional grid-based RBE technique. The belief fusion technique is examined by a simulated target search and rescue test and it is observed to maintain more information of the target compared with the conventional observation fusion technique and eventually leads to the better performance of the target search and rescue.

For the full-field measurement system a novel parallel DCT full-field measurement technique for measuring the displacement and strain field on the deformed surface of a structure is proposed. The proposed parallel DCT full-field measurement technique measures the displacement and strain field by tracking the centroids of the marked dots on the deformed surface. It identifies and develops the parallel computation in the image analysis and the field estimation processes and then is implemented into the GPU to accelerate the conventional full-field measurement techniques. The detail strategy of the GPU implementation is also developed and presented. The corresponding software package, which also includes a graphic user interface, and the hardware system consist of two digital cameras, LED lights and adjustable support legs to accommodate indoor or outdoor experimental environments are proposed. The proposed DTFLOP modeling is applied to the proposed parallel DCT full-field measurement technique to estimate its performance and the well match with the actual performance demonstrates the DTFLOP modeling. A number of both simulated and real experiments, including the tensile, compressive and bending experiments in the laboratory and outdoor environments, are performed to validate and demonstrate the proposed parallel DCT full-field measurement technique. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/47361
Date15 April 2014
CreatorsTong, Xianqiao
ContributorsMechanical Engineering, Furukawa, Tomonari, Ahmadian, Mehdi, Ferris, John B., Taheri, Saied, Woolsey, Craig A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0308 seconds