Return to search

Irreducible Orthogonal Decomposition of Tensors of any finite order in dimensions 2 and 3 in Deviatoric Tensors

The goal of this thesis is to understand the deviatoric decomposition of tensors of higher order in 2 and 3 dimensions. In the first chapter an introduction to tensor algebra will be given. Chapter 2 and 3 concentrate on establishing a recursive formula for the deviatoric decomposition in 2D and 3D, respectively. This recursive formula is the key to prove by induction the existense of a deviatoric decomposition for any tensor. Useful examples will also be given at the end of each chapter.:Introduction
1. Introduction to Tensor Algebra
2. Orthogonal Irreducible Decomposition for 2D Tensors
3. Orthogonal Irreducible Decomposition for 3D Tensors
4. Conclusion
Bibliography
5. Declaration of Originality

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80530
Date31 August 2022
CreatorsBarz, Anja
ContributorsScheuermann, Gerik, Rademacher, Hans-Bert, Universität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/updatedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds