In the last decade, some researches on the star problem in trace monoids (is the iteration of a recognizable language also recognizable?) has pointed out the interest of the finite power property to achieve partial solutions of this problem. We prove that the star problem is decidable in some trace monoid if and only if in the same monoid, it is decidable whether a recognizable language has the finite power property. Intermediary results allow us to give a shorter proof for the decidability of the two previous problems in every trace monoid without C4-submonoid.
We also deal with some earlier ideas, conjectures, and questions which have been raised in the research on the star problem and the finite power property, e.g. we show the decidability of these problems for recognizable languages which contain at most one non-connected trace.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-100451 |
Date | 28 November 2012 |
Creators | Kirsten, Daniel, Richomme, Gwénaël |
Contributors | Technische Universität Dresden, Fakultät Informatik, Université de Picardie Jules Verne, Laboratoire de Recherche en Informatique d'Amiens, Technische Universität Dresden, Fakultät Informatik |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:workingPaper |
Format | application/pdf, application/postscript, application/zip |
Relation | dcterms:isPartOf:Technische Berichte / Technische Universität Dresden, Fakultät Informatik ; 1999,03 (TUD-FI99-03 April 1999) |
Page generated in 0.0392 seconds