The problem of dilemma zone protection and red-light-running is especially important in certain rural intersections due to the higher speeds at these intersections and their isolated nature. In addition, the presence of a larger percentage of trucks mean that adequate warning and help need to be given to these truck drivers in order to enable them to stop safely, or proceed through the intersection before the onset of red.
To curb any potential danger at such intersections, a Texas Department of Transportation (TxDOT) research project on Advanced Warning for End of Green Phase (AWEGS) at high speed intersections deployed AWEGS at two rural intersection sites ?? Tx 6 @ FM 185 near Waco and US 290 @ FM 577 in Brenham. The deployment of AWEGS involved a Level 1 and a later upgrade to a more efficient Level 2 in Waco. Initial results on red-light-running, even though promising, were expressed as observed red-light-running events per day. These resulting rates did not reflect exposure, and the results also raised some concerns with regards to some increase in red-light-running from Level 1 to Level 2.
A more detailed analysis of the red-light-running issue at these two sites is provided in this thesis. The main areas of red-light-running analyses presented here are with respect to the reductions in red-light-running rates for the exposure factors of number of cycles and vehicular volumes, the comparison of day and night RLR rates and the nature of speeds of vehicles running the red light at the intersection in Waco.
AWEGS was found to reduce the total red-light-running per exposure factor after its deployment. Both Level 1 and Level 2 AWEGS operations were found to reduce red-light-running by up to 60%. Generally, total red-light-running per exposure factor between Level 1 and Level 2 was found to be about the same. Level 2 had lower daytime red-light-running rates and higher nighttime rates than Level 1. Generally, day rates were found to be higher than night rates for all levels of AWEGS deployment.
It is recommended that, to better understand the operational aspects of AWEGS and to improve its operations, more implementation of AWEGS and further tests be done. An automated method to collect and analyze data needs to be developed as well as a means of automatically recording video data for calibration and verification It is also recommended that Level 1 technology be implemented in areas where the Level 2 technology may be either too complex or too expensive.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2746 |
Date | 01 November 2005 |
Creators | Obeng-Boampong, Kwaku Oduro |
Contributors | Messer, Carroll J. |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 2467885 bytes, electronic, application/pdf, born digital |
Page generated in 0.0017 seconds