Made available in DSpace on 2014-06-12T18:06:31Z (GMT). No. of bitstreams: 2
arquivo7744_1.pdf: 3910735 bytes, checksum: 57edb854b2e0da92969b7239b5a7500e (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Utilizamos redes de mapas acoplados para modelar o comportamento coletivo de neurônios, onde cada elemento da rede é modelado pelo mapa não-linear proposto por Kuva et al. (2001). O mapa possui três variáveis, duas variáveis rápidas e uma lenta (que pode ser vista como uma corrente lenta), e mostra-se hábil para representar uma grande variedade de comportamentos de um neurônio individual real, tal como "bursting", disparos regulares, disparos rápidos e comportamento excitável. O modelo consiste em redes hipercúbicas de neurônios excitáveis, acoplados eletricamente através de uma condutância passiva G entre os primeiros vizinhos. As regiões onde a rede apresenta comportamento excitável coletivo são determinadas via análise de estabilidade linear. O limite de validade do modelo é determinado pelas linhas de bifurcação, em G = Gc, que delimitam a região de excitabilidade da rede: para valores da condutância acima do valor crítico, a rede passa de um regime excitável para um regime caótico. Com o sistema na região excitável, simulamos redes unidimensionais (1D) e bidimensionais (2D). Em 2D, além da rede completa, simulamos redes diluídas introduzindo uma probabilidade P de existir uma sinapse elétrica (com condutância G) entre dois vizinhos (percolação de ligação). O estímulo na rede é induzido por um processo de Poisson. Em 1D, a resposta da rede (a média da taxa de disparos na rede) como função da intensidade de estímulo apresenta um alargamento na faixa dinâmica, em comparação com a resposta de neurônios individuais. Esse resultado está, qualitativamente, de acordo com resultados experimentais e previsões teóricas obtidas através de modelos simplificados de autômatos celulares, o que fortalece a idéia de que o acoplamento elétrico pode levar ao aumento da faixa dinâmica. Em 2D, esse efeito é atrapalhado pela ocorrência de atividade auto-sustentável (ondas espirais), para a rede completa (P = 1). Isso pode ser corrigido com a escolha de um P apropriado para a diluição da rede. Dado G < Gc, existe um valor P*(G) tal que a faixa dinâmica é maximizada. Em 1D, a faixa dinâmica é máxima na criticalidade G = Gc
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/6636 |
Date | January 2006 |
Creators | José da Cruz Filho, Antônio |
Contributors | Copelli Lopes da Silva, Mauro |
Publisher | Universidade Federal de Pernambuco |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds