We consider reduced Hsieh-Clough-Tocher basis functions with respect to a splitting into subtriangles at the barycenter of the original triangular element.
This article gives a proof that the second derivatives of those functions, which in general may jump at the subtriangle boundaries, do not jump at the barycenter.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-154344 |
Date | 29 October 2014 |
Creators | Weise, Michael |
Contributors | TU Chemnitz, Fakultät für Mathematik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, text/plain, application/zip |
Relation | dcterms:isPartOf:Chemnitz Scientific Computing Preprints ; 14-04 |
Page generated in 0.0019 seconds