This thesis presents a technique for automatic vectorization of innermost single statement loops with a cross-iteration data dependence by analyzing data-flow to recognize frequently recurring program idioms. Recognition is carried out by matching the circular SSA data-flow found around the loop body’s φ-function against several primitive patterns, forming a tree representation of the relevant data-flow that is then pruned down to a single parameterized node, providing a high-level specification of the data-flow idiom at hand used to guide algorithmic replacement applied to the intermediate representation. The versatility of the technique is shown by presenting an implementation supporting vectorization of both a limited class of linear recurrences as well as prefix sums, where the latter shows how the technique generalizes to intermediate representations with memory state in SSA-form. Finally, a thorough performance evaluation is presented, showing the effectiveness of the vectorization technique.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-172789 |
Date | January 2020 |
Creators | Sjöblom, William |
Publisher | Linköpings universitet, Programvara och system, William Sjöblom |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds