Return to search

The role of solute elements on grain refinement of Al alloys with Al-Ti-B inoculations

Al alloys have been extensively used for producing structural and functional products. It is well known that a grain-refined as cast microstructure generally facilitates high quality finished products in the downstream processing stages. Chemical inoculation by Al-Ti-B grain refiners was widely used in the industry to refine Al alloys. However, the corresponding grain refining mechanism is still under dispute. In this study, the influence of solute elements on the grain refining of Al alloys in the presence of potent TiB2 inoculants was investigated in order to understand the grain refining mechanism of Al alloys by Al-Ti-B grain refiners. Firstly, an effective Al-Ti-B grain refiner, which contains potent TiB2 particles and negligible impurities (particularly Ti), was obtained by a settling experiment. The effectiveness of the grain refiner was verified by its inoculation in commercial purity Al (CP-Al) due to the significantly refined microstructure. Based on its compositional analysis, the grain refiner was found to contain little free Ti (only 600ppm) and other impurities (100ppm Fe, < 100ppm Si), and this refiner was referred to as Al-1.54TiB2. Secondly, with fixed addition of the Al-1.54TiB2 grain refiner, the effect of individual solute elements including Ti, Si, Fe, Sn, Zn, Cu, Mg, Mn, Cr and Zr, and the combined effects of Fe-Si, Fe-Cu and Fe-Ti on the grain structures of high purity Al (HP-Al) were investigated. It was found that, there is no direct correlation between the growth restriction parameter Q and the grain size when a fixed addition of Al-1.54TiB2 is present. The effects of solute elements on the grain structures of a final casting should consider both solidification kinetics and thermodynamic conditions. A theoretical columnar-equiaxed transition (CET) prediction model based on the analysis of a newly-established growth restriction coefficient β, which has considerations on both the thermodynamic and kinetic conditions, is presented for grain structure prediction. Finally, a poisoning (i.e., grain size coarsening) mechanism by Zr or Si addition in Al alloys containing TiB2 particles was studied. It was found that, for Al-Zr samples, a Zr-rich atomic mono-layer exists at the TiB2/Al interface to replace the originally present Al3Ti atomic monolayer. This was suggested to be the reason for Zr poisoning. For Al-Si samples, the Al3Ti atomic monolayer, which originally existed at the TiB2/Al interface, was found to have apparently disappeared, and this was likely to be the reason for Si poisoning.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:701915
Date January 2015
CreatorsZhou, Li
ContributorsFan, Z.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/13795

Page generated in 0.0022 seconds