Return to search

The fluidized retorting of oil shale from the Mahogany ledge of the Green River formation of Colorado

Considerable work has been done on the economic production of shale oil from oil shale. Of the possible materials which could replace crude petroleum as used today, oil shale possesses the greatest possibilities since, when retorted, it produces a shale oil very similar to crude petroleum, and on refining the products produced are similar. Of the fuel resources available in the United States, 98.8 percent is attributed to coal, 0.8 percent to oil shale, 0.2 percent to crude petroleum, and 0.2 percent to natural gas.

The purpose of this investigation was to study the effect of oil shale particle size on the shale oil obtained from oil shale retorted in a fluidized bed. Oil shale of minus 16 plus 28, minus 28 plus 70, minus 70 plus 100, and minus 100 plus 200 mesh (Tyler screen scale) was retorted at 715°F in a 4-inch diameter retort 36 inches long using carbon dioxide as the fluidizing medium. A retorting unit consisting of a fluidizing retort, fluidizing gas-heating section, disengaging section, cyclone separator, condensers, a surge tank, gas circulation system, and temperature measurement and control equipment was designed and constructed.

The fluidizing gas-heating section was constructed from a flanged 5-foot section of 8-inch diameter black iron pipe with eight 1250-watt heaters placed in the heating section at 6-inch intervals along the vertical axis. Additional heaters were provided on the gas transfer line to reduce the heating time.

The condensers were simple tube-in-shell heat exchangers constructed from 1-1/2-inch and 3/4-inch deoxidized copper pipe with headers for the oil receivers. The condensers were designed and constructed to operate counter-currently using return gas from the brine cooled condenser as the cooling medium in the first two condensers, water in the third condenser, and brine in the fourth condenser.

A gas circulation section consisting of a gas pump and appropriate valves was constructed to circulate the gas through the system. Temperature control and measuring equipment were provided for control of the gas temperature to the retort, and for measuring the temperature of the entering and exit material in each section.

On retorting 16-1/4 pounds of oil shale for one hour at a gas pressure of 10 pounds per square inch gage, yields of 50.5, 47.3, 40.9, and 39.4 percent of the available shale oil were obtained from oil shale of minus 16 plus 28, minus 28 plus 70, minus 70 plus 100, and minus 100 plus 200 mesh (Tyler screen scale), respectively.

The A.P.I. gravity was found to increase from 15.2, 17.9, 18.6, and 22.4 degrees, and the kinematic viscosity decrease from 12.18, 4.64, 2.94, and 1.66 centipoises for a decrease in particle size from minus 16 plus 28, minus 28 plus 70, minus 70 plus 100, and minus 100 plus 200 mesh (Tyler screen scale), respectively. The mid-boiling point of the shale oil decreased 510, 500, 482, and 380°F for the above particle sizes as did the average boiling point which decreased from 824, 724, 690, and 590 for oil shale of the same particle size.

The yield of non-condensable gases increased 0.67, 0.72, 1.01, and 1.2 cubic feet for oil shale of minus 16 plus 28, minus 28 plus 70, minus 70 plus 100, and minus 100 plus 200 mesh (Tyler screen scale).

A decrease in particle size of oil shale retorted at 715°F in a 4-inch fluidized retort using carbon dioxide as the fluidizing medium, was found to definitely reduce the mid-boiling point, average boiling point, and the kinematic viscosity of the shale oil, and to increase the A.P.I. gravity of the shale oil obtained as well as the volume of retort gas. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/51868
Date January 1955
CreatorsCarr, Jesse M.
ContributorsChemical Engineering
PublisherVirginia Polytechnic Institute
Source SetsVirginia Tech Theses and Dissertation
Languageen_US
Detected LanguageEnglish
TypeThesis, Text
Formatix, 174 {u2113}., application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 8288917

Page generated in 0.0015 seconds