Return to search

Solvent extraction : a study of the liquid/liquid interface with ligands combining x-ray and neutron reflectivity measurements / Extraction par solvant : étude d’une interface liquide/liquide contenant des ligants en associant des mesures de réflectivité de rayons X et de neutrons

Dans le cadre du retraitement des déchets nucléaires et du recyclage de métaux critiques, l'extraction par solvant est l'une des technologies les plus utilisées. L'interface liquide entre deux fluides non miscibles est considérée comme une région où de multiples phénomènes physiques et chimiques sont à prendre en compte et peuvent limiter ou favoriser le transfert d'espèces entre les deux fluides. La structure de ces interfaces doit être connue en fonction de plusieurs paramètres thermodynamiques pour pouvoir déterminer le paysage énergétique associée. La réflectivité de neutrons et de rayons est un des outils appropriés pour sonder ce genre d'interfaces enfouies et fluctuantes à l'échelle nanométrique et à l'équilibre. Pour cette étude, une nouvelle cellule a été construite et un programme spécifique d'analyse de données a été élaboré.Nous avons également porté notre étude sur deux différents systèmes bi-phasiques (eau / dodécane) contenant des sels de lanthanides et deux différents ligands non ioniques (ou extractants) : une diamide de type DMDBTDMA et de type DMDOHEMA, ces deux extractants étant connus pour avoir des comportements différents dans un processus d'extraction de cations métalliques en phase organique. Bien que la structure amphiphile des deux diamides soit bien connue, la structure de l'interface liquide / liquide semble être différente de celle que l'on pourrait s'attendre avec des tensioactifs classiques. L'organisation de ces ligands à l'interface est en effet plus complexe, varie en fonction de leurs concentrations dans la phase organique (seules des concentrations inférieures à la concentration d'agrégation critique ont été étudiées) et en fonction de la concentration d'acide et de sel dans la phase aqueuse. Une organisation de type monocouche n'est pas l'organisation principale de ces systèmes à l'équilibre mais on observe plutôt une couche épaisse de ligands.Plus précisément, dans le cas de la DMDBTDMA, cette région plus épaisse (environ trois à quatre fois la longueur du ligand) crée une région interfaciale où les molécules d'huile et d'eau peuvent se mélanger ainsi que les sels. Le système DMDOHEMA, présente une structuration différente avec également une épaisse couche de ligand (environ deux fois la longueur du ligand) mais située plus à l'intérieur de la phase huileuse et distinct de la distribution des sels à l'interface. Ces différentes structures interfaciales de DMDBTDMA et DMDOHEMA peuvent permettre d'expliquer les différents régimes de transfert ionique qualifiés soit de diffusionnel ou de cinétique. / In the frame of the nuclear waste reprocessing and various kinds of critical metals recycling methods, solvent extraction is one of the most used technological processes. The liquid interface between two immiscible fluids is considered as a region where many physical and chemical phenomena take place and can limit or promote the transfer of species between both fluids. The structure of these interfaces has to be known as a function of several thermodynamical parameters to be able to determine the associated energy landscape. X-ray and neutron reflectivity are suitable techniques to probe such kind of fluctuating and buried interfaces at the nanometer scale and at equilibrium. For this study, a new cell has been built and a specific data analysis procedure was established.We have focused our study on two different biphasic systems (water/dodecane) containing lanthanides salts and two different nonionic ligands or extractant molecules: DMDBTDMA and DMDOHEMA diamides. These ligands are known to have different behaviour in the lanthanides extraction process. Although the amphiphilic chemical structure of both diamides is well known, the structure of the liquid/liquid interface appears to be different as those expected for a classical surfactant molecule. This structure looks more complex, varies as a function of the ligand concentration in the organic phase (below the critical aggregation concentration) and as a function of the proton and salt concentration of the aqueous phase. A monolayer organization does not appear as the main interfacial structuration and a thicker organic layer with an excess of salt has to be considered.In the case of the DMDBTDMA, this thicker region (approximatively three or four times the length of the ligand) creates an interfacial region where oil and water molecules as well as some salts can mix in. The DMDOHEMA system shows a different structuration where we can roughly observe also a thick layer of the ligand (approximatively two times the length of the ligand) but located more within the oil phase and forming a barrier to the salt distribution. These different interfacial structures made of DMDBTDMA and DMDOHEMA could allow to explain the diffusive or kinetic regime of ion transfer observed respectively in similar systems by others authors.

Identiferoai:union.ndltd.org:theses.fr/2015MONTS203
Date30 November 2015
CreatorsScoppola, Ernesto
ContributorsMontpellier, Diat, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds