In this dissertation, different approaches have been employed to address the quest of understanding the formation and growth mechanisms of carbon-containing molecular ions with relevance to astrochemistry. Ion mobility mass spectrometry and DFT computations were used to investigate how a second nitrogen in the pyrimidine ring will affect the formation of a covalent bond between the benzene radical cation and the neutral pyrimidine molecule, after it was shown that a stable covalent adduct can be formed between benzene radical cation and the neutral pyridine. Evidence for the formation of a more stable covalent adduct between the benzene radical cation and the pyrimidine is reported here. The effect of substituents on substituted-benzene cations on their solvation by an HCN solvent was also investigated using ion mobility mass spectrometry and DFT computations were also investigated. We looked at the effect of the presence of electron-withdrawing substituents in fluorobenzene, 1,4 di- fluorobenzene, and benzonitrile on their solvation by up to four HCN ligands, and compared it to previous work done to determine the solvation chemistry of benzene and phenylacetylene by HCN. We report here the observed increase in the binding of the HCN molecule to the aromatic ring as the electronegativity of the substituent increased. We also show in this dissertation, DFT calculations that reveal the formation of both hydrogen-bonded and electrostatic isomers, of similar energies for each addition to the ions respectively. The catalytic activity of the 1st and 2nd row TM ions towards the polymerization of acetylene done using the reflectron time of flight mass spectrometry and DFT calculations is also reported in this dissertation. We explain the variation in the observed trend in C-H/C-C activity of these ions. We also report the formation of carbide complexes by Zr+, Nb+, and Mo+, with the acetylene ligands, and show the thermodynamic considerations that influence the formation of these dehydrogenated ion-ligand complexes. Finally, we show in this dissertation, a novel ionization technique that we employed to generate ions that could be relevant to the interstellar and circumstellar media using the reflectron time of flight mass spectrometry.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1524 |
Date | 03 May 2013 |
Creators | Attah, Isaac Kwame |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0024 seconds