Return to search

Análise do comportamento à fadiga de vigas de concreto armado reforçadas com PRF de vidro, carbono e aramida

Nos últimos anos o conhecimento do comportamento de estruturas de concreto armado reforçadas com materiais compósitos aumentou significativamente, devido aos esforços em pesquisa induzidos pelo crescente interesse da indústria da construção.Todavia, precisam ser mais bem investigadas questões relativas à ligação concreto-reforço, assim como a durabilidade e a resposta ao longo do tempo de estruturas reforçadas. Buscando colaborar neste sentido, o objetivo principal desta tese foi estudar os mecanismos de falha prematura, devido ao carregamento cíclico ao efeito da concentração de tensão no compósito na região de fissuração do concreto. O comportamento da ligação foi estudado simulando experimentalmente situações de fissuração por flexão e cisalhamento, separadamente. Os resultados não confirmaram a hipótese de que os deslocamentos diferenciais na borda de uma fissura geram esforços de cisalhamento que provocam primeiramente a ruptura do compósito, indicando que o principal problema pode ser deformações localizadas. Confirmaram, porém, a importância de ancoragens adicionais e indicaram que o comprimento de ancoragem necessário nos compósitos não é muito elevado, aproximadamente 200mm. Já a influência do carregamento cíclico foi estudada em dois grupos de vigas, de tamanho reduzido e em escala real, submetidas a diferentes níveis de variação da tensão (20% a 70%) e tensão mínima (10% a 40%), no intuito de obter informações do comportamento à fadiga em diversas circunstâncias. Compósitos formados com fibras de vidro e aramida foram testados como alternativas de menor custo, além do carbono. Os resultados mostraram que o comportamento à fadiga dos diferentes compósitos varia, com vantagem para o PRF de carbono. A falha por fadiga é governada pela fratura das barras de aço, mas a presença do reforço aumenta a vida útil, não só reduzindo a tensão na armadura mas também retardando a falha. A presença do reforço, especialmente quando são usadas diversas camadas de fibras, parece contribuir para o retardamento da falha por fadiga, devido ao controle do processo de fissuração. Os resultados permitiram criar modelos de regressão linear para previsão da resistência à fadiga, para vigas reforçadas e não reforçadas, que se ajustaram bem aos dados de vários pesquisadores em comparação a outros modelos. O modelo proposto indica que quando são aplicadas tensões altas, a falha por fadiga pode ocorrer primeiramente no compósito ou na interface. Estudos adicionais, para caracterizar o comportamento à fadiga de estruturas reforçadas com PRF quando as tensões ou variações no reforço são elevadas e para confirmar se o limite à fadiga dos PRF realmente se localiza em torno de uma variação de tensão de 200MPa, valor superior ao recomendado pelo ACI 215R (150MPa). / Knowledge about the behavior of RC structures strengthened with fiber reinforced polymers has significantly increased in the last few years, due to a strong research effort induced by a growing interest from practitioners. Nonetheless, there are still some important issues regarding the behavior of these materials that require attention, such as characterization of premature failure mechanisms, durability requirements and long time response under load. The main objective of this study was to analyze failure mechanisms related to fatigue due to cyclic loads and tension concentration in the composite in regions of cover concrete cracking. The bonding behavior in regions where the cover concrete was cracked was studied by experimental simulation of flexural and shear cracking, separately. The results did not confirm the initial hypothesis that crack tip differential displacements induce shear stresses that produce early composite failure, indicating that the main problem was probably due to localized tensile strain. The data collected, however, highlighted the importance of using additional anchorage laces and suggested that the effective anchorage length of a PRF is approximately 200mm. The effects of cyclic loads was investigated in real scale and reduced size beams, subjected to different levels of stress variation (20% to 70%) and distinct values of minimum stress (10% to 40%), in order to gather information about behavior under various circumstances. Glass and aramid fiber composites were tested as lower cost reinforcement alternatives. The results showed that the fatigue behavior of different composites varies, with CFRP having the best performance. Failure is normally controlled by the fatigue of the steel bars, but the presence of the reinforcement reduces the stress levels in the steel and increases fatigue service life considerably. The presence of the reinforcement, especially when multi-layered, also seems to delay the fatigue failure due to cracking control. Regression models were developed to predict the fatigue service life of strengthened beams that had a better fit to experimental data collected in this work and by other researchers than other models tested. The model suggests that when high stresses are applied, fatigue might occur first in the composite or the bonding interface. Additional work is required to confirm the indication that the fatigue limit of strengthened beams is associated with a stress level of 200MPa in the rebar, higher than the recommended value (150 MPa) used in the ACI design guideline 215R.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/12145
Date January 2007
CreatorsMeneghetti, Leila Cristina
ContributorsSilva Filho, Luiz Carlos Pinto da, Gastal, Francisco de Paula Simoes Lopes
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds