Return to search

Inferência em modelos heteroscedásticos na presença de pontos de alavanca

Made available in DSpace on 2014-06-12T18:06:15Z (GMT). No. of bitstreams: 2
arquivo7253_1.pdf: 573098 bytes, checksum: b629eacebc3655d6a473531ecdcde631 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2003 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Técnicas clássicas de regressão linear assumem que os erros, que representam a componente aleatória do modelo, têm variância constante, ou seja, assumem homoscedasticidade. Contudo, esta suposição é bastante forte e, em uma relevante parte dos problemas práticos, muito pouco razoável. A presente dissertação considera a estimação consistente da matriz de covariâncias do estimador de mínimos quadrados ordinários em um modelo de regressão linear sob heteroscedasticidade de forma desconhecida. O estimador mais usado é aquele proposto por Halbert White, conhecido como HC0. Consideramos também outros estimadores consistentes, a saber: o estimador HC3, que é uma aproximação do estimador jackknife, e o estimador HC4 proposto por Cribari Neto (2004), que leva em consideração ao o efeito de pontos de alta alavancagem em amostras finitas. Dois estimadores consistentes obtidos a partir de esquemas de reamostragem de bootstrap são também considerados. Nós propomos, com base no estimador HC4, um novo estimador: HC5. Este estimador é o primeiro estimador na classe dos estimadores consistentes da matriz de covariâncias do estimador de mínimos quadrados a incorporar termos de descontos que se ajustam a variações no grau máximo de alavancagem dos dados. Nós apresentamos resultados de simulação de Monte Carlo sobre o desempenho de testes quasi-t cujas estatísticas são baseadas nos diferentes estimadores consistentes.
A avaliação é realizada tanto sob homoscedasticidade quanto sob heteroscedasticidade e os resultados revelam que o teste construído a partir do estimador HC5 tipicamente apresenta desempenho superior aos demais testes considerados. No que se refere a inferência via bootstrap, há muito pouco ganho em amostras finitas em se usar o esquema de reamostragem de bootstrap ponderado para realizar testes bootstrap, estimando-se valores p ou valores críticos, ao invés de se utilizar o bootstrap ponderado para estimação de erros-padrão a serem utilizados em estatísticas de teste convencionais. Nossos resultados também revelam que a presença de pontos de alta alavancagem exerce um papel importante no desempenho dos diferentes estimadores consistentes em amostras de tamanho típico. Algumas aplicações empíricas são, por fim, apresentadas

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/6582
Date January 2003
CreatorsCorreia de Souza, Tatiene
ContributorsCribari Neto, Francisco
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds