O objetivo desta dissertação é estudar uma família de ligações assimétricas para modelos de regressão binária sob a abordagem bayesiana. Especificamente, apresenta-se a estimação dos parâmetros da família de modelos de regressão binária com funções de ligação potência e reversa de potência considerando o método de estimação Monte Carlo Hamiltoniano, na extensão No-U-Turn Sampler, e o método Metropolis-Hastings dentro de Gibbs. Além disso, estudam-se diferentes medidas de comparação de modelos, incluindo critérios de informação e de avaliação preditiva. Um estudo de simulação foi desenvolvido para estudar a acurácia e eficiência nos parâmetros estimados. Através da análise de dados educacionais, mostra-se que os modelos usando as ligações propostas apresentam melhor ajuste do que os modelos usando ligações tradicionais. / The aim of this dissertation is to study a family of asymmetric link functions for binary regression models under Bayesian approach. Specifically, we present the estimation of parameters of power and reversal power binary regression models considering Hamiltonian Monte Carlo method, on No-U-Turn Sampler extension, and Metropolis-Hastings within Gibbs sampling method. Furthermore, we study a wide variety of model comparison measures, including information criteria and measures of predictive evaluation. A simulation study was conducted in order to research accuracy and efficiency on estimated parameters. Through analysis of educational data we show that models using the proposed link functions perform better fit than models using standard links.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06092017-160302 |
Date | 07 April 2017 |
Creators | Anyosa, Susan Alicia Chumbimune |
Contributors | Guzmán, Jorge Luis Bazán |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds