We propose a method to deal simultaneously with model uncertainty and correlated regressors in linear regression models by combining elastic net specifications with a spike and slab prior. The estimation method nests ridge regression and the LASSO estimator and thus allows for a more flexible modelling framework than existing model averaging procedures. In particular, the proposed technique has clear advantages when dealing with datasets of (potentially highly) correlated regressors, a pervasive characteristic of the model averaging datasets used hitherto in the econometric literature. We apply our method to the dataset of economic growth determinants by Sala-i-Martin et al. (Sala-i-Martin, X., Doppelhofer, G., and Miller, R. I. (2004). Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. American Economic Review, 94: 813-835) and show that our procedure has superior out-of-sample predictive abilities as compared to the standard Bayesian model averaging methods currently used in the literature. (authors' abstract) / Series: Research Report Series / Department of Statistics and Mathematics
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:3213 |
Date | 09 1900 |
Creators | Hofmarcher, Paul, Crespo Cuaresma, Jesus, Grün, Bettina, Hornik, Kurt |
Publisher | WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://statmath.wu.ac.at/, http://epub.wu.ac.at/3213/ |
Page generated in 0.0021 seconds