The temporal and spatial patterning that underlies morphogenetic events is controlled by gene regulatory networks (GRNs). These operate through a combinatorial code of DNA – binding transcription factor proteins, and non – coding DNA sequences (cis-regulatory elements, or CREs), that specifically bind transcription factors and regulate nearby genes. By comparatively studying the development of different species, we can illuminate lineage – specific changes in gene regulation that account for morphological evolution.
The central nervous system of vertebrates is composed of diverse neural cells that undergo highly coordinated programs of specialization, migration and differentiation during development. Approximately 20% of neurons in the cerebral cortex are GABAergic inhibitory interneurons, which release the neurotransmitter gamma-aminobutyric acid (GABA). Diseases such as autism, schizophrenia and epilepsy are associated with defects in GABAergic interneuron function. Several members of the distal-less homeobox (Dlx) transcription factor family are implicated in a GRN underlying early GABAergic interneuron development in the forebrain.
I examined the role played by orthologous dlx genes in the development of GABAergic interneurons in the zebrafish forebrain. I found that when ascl1a transcription factor is down-regulated through the micro-injection of translation – blocking morpholino oligonucleotides, Dlx gene transcription is decreased in the diencephalon, but not the telencephalon. Similarly, gad1a transcription is also decreased in this region for these morphants. As gad1a encodes an enzyme necessary for the production of GABA, these genes are implicated in a cascade underlying GABAergic interneuron development in the diencephalon.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/23655 |
Date | January 2013 |
Creators | Pollack, Jacob N. |
Contributors | Ekker, Marc |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds