Return to search

Identifying Novel Regulatory Inputs Governing Salmonella Enterica Niche-Specific Gene Expression / Niche Specific Gene Regulation in Salmonella Enterica

Salmonella enterica is an enteric pathogen with a broad host tropism that can cause disease ranging from self-limited gastroenteritis to enteric fever. The evolution of S. enterica as a pathogen is driven by the horizontal acquisition of genes that promote virulence and survival within host immune cells, as well as the coordinated regulation of these and ancestral genes by two-component systems (TCS). TCS integrate environmental cues with the transcriptional reprogramming of bacteria, and in the case of Salmonella, result in niche-specific gene expression in response to anti-bacterial cues produced by the host. The TCS SsrA-SsrB in S. enterica is considered the master regulator for intracellular virulence, where SsrA is a sensor kinase that triggers the activation of the DNA binding protein SsrB. The full suite of genes regulated by SsrB in S. enterica, as well as the cues that activate this TCS, have not been fully characterized. Here, we demonstrated that horizontally acquired and ancestral genes in the S. enterica genome have evolved to be regulated by SsrB, and the repression of a set of ancestral genes involved in flagellar motility promotes evasion of the host immune system. Additionally, we identified the production of reactive oxygen species (ROS) by host immune cells as a signal that can activate a cluster of genes regulated by the SsrA-SsrB TCS, likely mediated by SsrA sensing of these ROS. Together, these results expand our understanding of the complex interplay between the pathogen S. enterica and the host that results in bacterial infections. / Thesis / Doctor of Philosophy (PhD) / Salmonella enterica (S. enterica) is a species of bacteria that can cause food poisoning in various animals, including humans, through consumption of contaminated food and water. During an infection, host cells activate numerous defense mechanisms to prevent disease. S. enterica has evolved to turn specific genes on or off in response, resulting in modifications to bacterial and host cell behaviour that promote infection. The timing of these genetic changes is controlled by proteins that can sense specific environmental signals and adjust gene expression accordingly. The specific signals sensed by S. enterica that allow for adaptive gene expression within the host, and the types of genes that are regulated to promote survival, have not been fully identified. Here, we show that S. enterica evolved to repress genes involved in flagellar motility to hide from the host immune response. We further demonstrate that S. enterica can sense anti-bacterial molecules produced by the host, called reactive oxygen species, to trigger specific changes in gene expression. Together, this work reveals novel aspects for the molecular basis of Salmonella enterica pathogenesis.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25190
Date January 2019
CreatorsIlyas, Bushra
ContributorsCoombes, Brian, Biochemistry and Biomedical Sciences
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0015 seconds