Return to search

Leak Detection in Two-Phase Oil and Gas Pipelines by Parameter- and State Estimation

<p>A two-fluid model is used to derive a set of boundary conditions. The conditions are produced numerically, and try to imitate the behavior of output injection by using a linearized version of the model. In order to ensure that the model is hyperbolic, virtual mass terms are included in the momentum equations. An observer is presented, using OLGA, a fluid simulator, as its model. The boundary conditions derived are employed in the observer, and its convergence properties are shown to improve. A set of adaption laws for estimating parameters in a two-phase leak model is derived. Estimation of the leakage mass fraction is sacrifced in order to increase performance and stability. A model, also based on OLGA, is used to simulate a leak, and the observer prove to give good estimates of leak parameters as long as estimates of leakage mass fraction is available. Mass flow fraction seem to be a sufficient estimate. A wide range of scenarios are simulated, inspecting the weaknesses of the observer.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:ntnu-8862
Date January 2008
CreatorsHodne, Kjetil
PublisherNorwegian University of Science and Technology, Department of Engineering Cybernetics, Institutt for teknisk kybernetikk
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0025 seconds