We solve the problem of two-point boundary optimal control of linear time-varying systems with unknown model dynamics using reinforcement learning. Leveraging singular perturbation theory techniques, we transform the time-varying optimal control problem into two time-invariant subproblems. This allows the utilization of an off-policy iteration method to learn the controller gains. We show that the performance of the learning-based controller approximates that of the model-based optimal controller and the approximation accuracy improves as the control problem’s time horizon increases. We also provide a simulation example to verify the results / M.S. / We use reinforcement learning to find two-point boundary optimum controls for linear time-varying systems with uncertain model dynamics. We divided the LTV control problem into two LTI subproblems using singular perturbation theory techniques. As a result, it is possible to identify the controller gains via a learning technique. We show that the training-based controller’s performance approaches that of the model-based optimal controller, with approximation accuracy growing with the temporal horizon of the control issue. In addition, we provide a simulated scenario to back up our findings.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115915 |
Date | January 2023 |
Creators | Baddam, Vasanth Reddy |
Contributors | Computer Science and Applications, Eldardiry, Hoda, Watson, Layne T., Boker, Almuatazbellah (Muataz) |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | Creative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0021 seconds