Return to search

Aplicação da rede GTSOM para navegação de robôs móveis utilizando aprendizado por reforço / Using the GTSOM network for mobile robot navigation with reinforcement learning

Neste trabalho será descrita uma arquitetura de agente robótico autônomo projetada para ser capaz de criar uma representação de estado do ambiente e de realizar o aprendizado de tarefas simples em cima desta representação. A rede GTSOM (BASTOS, 2007) foi selecionada como método para classificação de estados. Sua tarefa é transformar os dados multidimensionais e contínuos lidos dos sensores em uma representação discreta, permitindo o uso de aprendizado por reforço convencional. Algumas modificações no algoritmo da rede foram necessárias para que pudesse ser aplicada neste contexto. Juntamente com esta rede, foi utilizado um mapa de grade que permite associar as experiências sensoriais com sua localização espacial. Enquanto a rede GTSOM é o ponto central de um sistema de classificação de estados, o algoritmo Q-Learning de aprendizado por reforço foi utilizado para a realização da tarefa. Utilizando a representação compacta de estado criada pela rede auto-organizável, o agente aprende as ações que devem ser executadas em cada ponto, para atingimento de seus objetivos. O modelo foi testado com um experimento que consiste em encontrar um objeto em um labirinto. Os resultados obtidos nos testes mostraram que o modelo consegue segmentar adequadamente o espaço de estados, e realiza o aprendizado da tarefa. O agente consegue aprender a evitar colisões e memorizar a localização do alvo, podendo chegar até ele independentemente de sua posição inicial. Além disso, é capaz de expandir sua representação sempre que se depara com situações não conhecidas, ao mesmo tempo que gradualmente remove da memória estados associados a experiências que não se repetem. / This work describes an architecture for an autonomous robotic agent that is capable of creating a state representation of its environment and learning how to execute simple tasks using this representation. The GTSOM Neural Network was chosen as the method for state clustering. It is used to transform the multidimensional and continuous state signal into a discrete representation, allowing the use of conventional reinforcement learning techniques. Some modifications on the algorithm were necessary so that it could be used in this project. This network is used together with a grid map algorithm that allows the model to associate the sensor readings with the places where they ocurred. While the GTSOM network is the main component of a state clustering system, the Q-Learning reinforcement learning method was chosen for the task execution. Using the compact state representation created by the self-organizing network, the agent learns which actions to execute at each state in order to achieve its objectives. The model was tested in an experiment that consists in finding the path in a maze. The results show that it can divide the state space in an useful way, and is capable of executing the task. It learns to avoid collisions and remembers the location of the target, even when the robot’s initial position is changed. Furthermore, the representation is expanded when the agent faces an unknown situation, and at the same time, states associated with old experiences are forgotten.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/22816
Date January 2009
CreatorsMenegaz, Mauricio
ContributorsEngel, Paulo Martins
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds