Temporal relation classification is one of the most challenging areas of natural language processing. Advances in this area have direct relevance to improving practical applications, such as question-answering and summarization systems, as well as informing theoretical understanding of temporal meaning realization in language. With the development of annotated textual materials, this domain is now accessible to empirical machine-learning oriented approaches, where systems treat temporal relation processing as a classification problem: i.e. a decision as per which label (before, after, identity, etc) to assign to a pair (i, j) of event indices in a text. Most reported systems in this new research domain utilize classifiers that make decisions effectively in isolation, without explicitly utilizing the decisions made about other indices in a document. In this work, we present a new strategy for temporal relation classification that utilizes global models of temporal relations in a document, choosing the optimal classification for all pairs of indices in a document subject to global constraints which may be linguistically motivated. We propose and evaluate two applications of global models to temporal semantic processing: joint prediction of situation entities with temporal relations, and temporal relations prediction guided by global coherence constraints. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/19160 |
Date | 17 January 2013 |
Creators | Ponvert, Elias Franchot |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0019 seconds