In the field of machine learning, methods for learning from single-table data have received much more attention than those for learning from multi-table, or relational data, which are generally more computationally complex. However, a significant amount of the world's data is relational. This indicates a need for algorithms that can operate efficiently on relational data and exploit the larger body of work produced in the area of single-table techniques. This thesis presents algorithms for learning from relational data that mitigate, to some extent, the complexity normally associated with such learning. All algorithms in this thesis are based on the generation of random relational rules. The assumption is that random rules enable efficient and effective relational learning, and this thesis presents evidence that this is indeed the case. To this end, a system for generating random relational rules is described, and algorithms using these rules are evaluated. These algorithms include direct classification, classification by propositionalisation, clustering, semi-supervised learning and generating random forests. The experimental results show that these algorithms perform competitively with previously published results for the datasets used, while often exhibiting lower runtime than other tested systems. This demonstrates that sufficient information for classification and clustering is retained in the rule generation process and that learning with random rules is efficient. Further applications of random rules are investigated. Propositionalisation allows single-table algorithms for classification and clustering to be applied to the resulting data, reducing the amount of relational processing required. Further results show that techniques for utilising additional unlabeled training data improve accuracy of classification in the semi-supervised setting. The thesis also develops a novel algorithm for building random forests by making efficient use of random rules to generate trees and leaves in parallel.
Identifer | oai:union.ndltd.org:ADTP/237983 |
Date | January 2008 |
Creators | Anderson, Grant |
Publisher | The University of Waikato |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.waikato.ac.nz/copyright.shtml |
Page generated in 0.0013 seconds