Given an undirected graph G(V,E) and a vertex subset U\subseteq V the U-space is the vector space over GF(2) spanned by the paths with end-points in U and the cycles in G(V,E). We extend Vismara's algorithm to the computation of the union of all minimum length bases of the U-space. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_9ef |
Date | January 2001 |
Creators | Gleiss, Petra M., Leydold, Josef, Stadler, Peter F. |
Publisher | Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://dx.doi.org/10.1002/net.20080, http://epub.wu.ac.at/1214/ |
Page generated in 0.0013 seconds