There is a large amount of geotechnical data. By putting it into a database, it can be applied to design reliable offshore foundations. The goal of this research is to improve the efficiency and transparency of the implementation of the previously developed reliability-based framework to streamline the process for analyzing and developing an offshore site in the Gulf of Mexico by looking at spatial variations among data sets.
This thesis documents how to store soil behavior information in the database and how to use that information for offshore foundation design. The process is illustrated through observing the steps with figures provided directly from the database so the user can more readily use the database to produce results. This makes the database more transparent for the user to follow the flow of information from input to analysis and to follow the calculation process as well. Enhancements were also made to the database to provide a more readily accessible interface. There is now an allowance of data to streamline the data input process. There is also a set amount of fifty data points to be used in each spatially conditioned analysis.
These detailed explanations and consistencies in data collection help the user to understand the models. This database provides a synthetic image of the site using both physical and statistical parameters where there might not be exact data at a desired foundation location. By providing the industry with a database that uses reliability-based design from actual data and spatial variation analysis, this project will continue to provide a more efficient design process. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23564 |
Date | 18 March 2014 |
Creators | Zadrozny, Katherine Elaine |
Source Sets | University of Texas |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.002 seconds