Le réchauffement climatique actuel entraine la fonte du pergélisol dans les zones septentrionales et la dégradation des infrastructures qui ont été construites dessus. Le présent mémoire porte sur l'étude de la dégradation des routes concernées par cette fonte. L'objectif est de réaliser un modèle numérique permettant de simuler et ainsi de prévoir l'évolution thermique d'un remblai situé sur du pergélisol, afin de pouvoir tester des solutions technologiques qui ont pour but de limiter le dégel de ce sol. Le modèle numérique est validé à partir de relevés de température effectuée sur un site expérimental situé à Beaver Creek, à la frontière du Yukon et de l'Alaska, qui subit directement l'effet de la fonte du pergélisol. Une fois le modèle numérique validé, trois solutions technologiques sont testées puis optimisées. La première solution est un remblai dit convectif, où l'on remplace le gravier situé sous ou en accotement de la route, par des pierres de grosses tailles, favorisant ainsi les phénomènes de transfert de chaleur par convection naturelle. Les résultats ont montré que le remblai convectif était la solution la plus performante pour créer une zone gelée de grande taille présente toute l'année sous la route. La deuxième solution est l'utilisation d'un drain thermique. Une conduite d'air est installée dans l'accotement du remblai, laissant circuler l'air par convection naturelle, en favorisant l'effet cheminée. Les résultats ont montré que le drain thermique était la solution la plus efficace pour limiter le dégel du remblai en été. Enfin, la troisième et dernière solution est l'utilisation d'une surface réfléchissante sur la route, ayant pour but de diminuer l'absorbtivité de la route, et ainsi de limiter le dégel du remblai. Les résultats ont montré que l'effet de cette surface réfléchissante était réel mais très localisé. Cependant, cette dernière solution reste la plus simple à mettre en place, car elle ne nécessite pas de travaux de grande envergure. Chacune de ces trois solutions a été optimisée. Les résultats finaux ont montré que la solution optimale, constituée d'un remblai à convection et d'une surface réfléchissante permettait d'éviter durant toute l'année que le pergélisol situé sous la route à Beaver Creek ne dégèle. Cela correspond donc à l'objectif fixé au départ pour le site expérimental étudié, et peut être développé pour d'autres situations de dégradation de routes dues à la fonte du pergélisol. / The current global warming triggers permafrost thawing, which jeopardizes the infrastructures that have been built on it. The present document presents a study of the thermal damage that roads experience because of this thawing. The objective is to build a numerical model to simulate and predict the thermal evolution of an embankment located on permafrost, in order to test technological solutions considered to limit the soil thawing. The numerical model is validated based on in situ temperature measurements collected in Beaver Creek, at the Yukon-Alaska border, that experiences the effects of permafrost thawing. Once the model is validated, three technological solutions are tested and optimized. The first solution is a convective embankment in which the gravel located under the road or on its shoulder is replaced by a layer of large rocks in order to enhance heat transfer by the air self-driven flow in this layer. Results have shown that the convective embankment was the most efficient solution for creating a large frozen region under the road ail over the year. The second solution is the thermal drain. An air duct in which air flow is triggered by natural convection is installed in the shoulder. The results revealed that the thermal drain was the best solution for preventing the thawing of the embankment in the summer. Finally, a third solution considered was to cover the surface of the road with a reflective painting in order to diminish the amount of solar radiation absorbed. The effect of the painting was very much localized. However, this last solution is the simplest to implement, because it does not require large roadwork. Each of these three solutions has been optimized. The optimal solution consisted of a convective embankment combined with a reflective surface in order to avoid the thawing of the road considered in this study. This corresponds meets the initial objective for the Beaver Creek road, and could be extended to other infrastructures on permafrost.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/19844 |
Date | 13 April 2018 |
Creators | Chataigner, Yohann |
Contributors | Gosselin, Louis, Doré, Guy |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | xii, 125 f., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0013 seconds