Return to search

The use of remotely sensed data to analyse spatial and temporal trends in vegetation patchiness within rehabilitated bauxite mines in the Darling Range, W.A.

[Truncated abstract] The assessment of rehabilitation success is time consuming and costly for bauxite miners because large areas of land (~550 ha per year) are involved. In some cases, rehabilitation results in patches of bare or sparsely vegetated soil. This study uses remote sensing imagery to evaluate the growth of vegetation in rehabilitated bauxite mines in the Darling Range, W.A. This work has five aims, which are to (1) compare vegetation biomass within rehabilitated areas and nearby native forest; (2) analyse temporal changes in vegetation growth within the selected rehabilitated areas, in particular rehabilitated areas with patches of bare soil; (3) compare vegetation growth pre- and post- mining; (4) identify the best type of remotely sensed data for this particular study area, and (5) develop an index, which can classify the degree of vegetation patchiness within rehabilitated mine sites. This information will enable rehabilitation workers to identify patches in rehabilitated areas that may require further remediation. The study used RADARSAT, nine years of Normalised Difference Vegetation Index (NDVI) maps (extracted from LANDSAT TM multivariate imagery and Quickbird imagery) and aerial photographs to evaluate forty-seven ~1 ha study sites. Image and map analyses were conducted mainly using ESRI’s software ArcGIS 8.3 and ER Mapper 6.4. Ground truthing was carried out to confirm and recognise the causes of bare patches within the rehabilitated mine sites ... The results indicate that differences in rehabilitation management do not affect this index but the extent of bare patches does. Due to the sensitivity of radar imagery to surface roughness, rehabilitated areas cannot be distinguished from the native forest using radar images. A building (crusher) appears to be the same as mature vegetation. Knowledge of the features in an area is therefore crucial when utilising RADARSAT. The beam elevation angle and profile of the RADARSAT image used, made superimposition of radar and optical imageries impossible. Speckle noise in RADARSAT images made it impossible to detect relatively small bare patches. In addition, the many cloud free days in Western Australia make optical imaging possible so that the ability of radar imagery to penetrate cloud is redundant for this type of study.

Identiferoai:union.ndltd.org:ADTP/221181
Date January 2006
CreatorsPrananto, Agnes Kristina
PublisherUniversity of Western Australia. School of Earth and Geographical Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Agnes Kristina Prananto, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0011 seconds