Return to search

Power control strategies for renewable energy systems : The inverter's role in future power systems

Connecting more non-dispatchable renewable energy sources (RESs) will result in a higher power variability and a lower system inertia when the synchronous generators are replaced by inverter-connected RES. Inverter control can be divided in three categories: grid-following, grid-forming (GFM) and grid-supporting. A literature review of inverter control strategies identifies the GFM control as having an important role in maintaining system stability assuming near 100 % inverter-connected RES. Critical aspects of the inverter control are also identified; the control need to function autonomously, be able to remain connected during transient events and be insensitive to grid topology. Combining various RES is also shown to improve system stability. The combination of RES that has been investigated in most studies is wind, solar and wave power. Wave power is still a young technology compared to solar and wind power. It generates higher power fluctuations over short time periods with a significant difference between average and maximum power. Additionally, wave power parks (WPPs) are often connected via long cables which contribute reactive power to the grid. These challenges has to be considered to maintain system stability and power quality when connecting a WPP to the grid. In a Power Hardware-In-the-Loop study of how a WPP affects the power quality at the point of common coupling (PCC), it is found that the impact is highest for WPPs with fewer generators as the variability is reduced when several generators are excited at different times. Energy storage is also shown to have a significant impact on the power quality at the PCC with reduced flicker, total harmonic distortion and power and voltage variability. A simulation study also shows the positive impact of energy storage on power variability and the role of inverter control in reactive power compensation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-421009
Date January 2020
CreatorsAnttila, Sara
PublisherUppsala universitet, Institutionen för elektroteknik, Uppsala : Department of Electrical Engineering
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds