Return to search

Spectral Properties of the Renormalization Group

The renormalization group (RG) approach is largely responsible for the considerable success which has been achieved in developing a quantitative theory of phase transitions. This work investigates various spectral properties of the RG map for Ising-type classical lattice systems. It consists of four parts. The first part carries out some explicit calculations of the spectrum of the linearization of the RG at infinite temperature, and discovers that it is of an unusual kind: dense point spectrum for which the adjoint operators have no point spectrum at all, but only residual spectrum. The second part presents a rigorous justification of the existence and differentiability of the RG map in the infinite volume limit at high temperature by a cluster expansion approach. The third part continues the theme of the third part, and shows that the matrix of partial derivatives of the RG map displays an approximate band property for finite-range and translation-invariant Hamiltonians at high temperature. The last part justifies the differentiability of the RG map in the infinite volume limit at the critical temperature under a certain condition. In summary, the first part deals with special cases where exact computations can be done, whereas the remaining parts are concerned with a general theory and provide a mathematically sound base.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195253
Date January 2010
CreatorsYin, Mei
ContributorsFaris, William G., Faris, William G., Kennedy, Thomas, Pickrell, Douglas, Sims, Robert
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds