Return to search

Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas / Generalized estimating equation and local influence to beta regression models with repeated measures

Utilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais. / Based on the concept of optimum linear estimating equation (Crowder, 1987), we develop generalized estimating equation (GEE) to analyze longitudinal data considering marginal beta regression models (Ferrari and Cribari-Neto, 2004). The GEEs are also presented to marginal simplex models for longitudinal continuous proportional data proposed by Song and Tan (2000) and Song et al. (2004) and to generalized linear models for longitudinal data based on the proposes of Artes and J$\\phi$rgensen (2000) and Liang and Zeger (1986). All of them are developed focusing the assumption of homogeneous dispersion and with varying dispersion. For the diagnostic techniques, we generalize some diagnostic measures for estimating equations to model the position parameter considering an homogeneous dispersion parameter and for joint modelling of position and dispersion parameters to take in account a possible heterogeneous dispersion. Among these measures, we point out the local influence (Cook, 1986) developed to estimating equations. This measure can correctly show influential observations in simulation study. Finally, the theory is applied to real data sets.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10072008-210246
Date04 March 2008
CreatorsVenezuela, Maria Kelly
ContributorsBotter, Denise Aparecida, Sandoval, Monica Carneiro
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.003 seconds