Return to search

Influences of visuospatial mental processes and cortical excitability on numerical cognition and learning

Numerical cognition has been shown to share many aspects of spatial cognition, both behavioural and neurological. However, it is unclear whether a particular type of spatial cognition, visuospatial mental imagery (VSMI), may play a role in symbolic numerical representation. In this thesis, I first show that mental rotation, a form of VSMI, is related to two measures of basic numerical representation. I then show that number-space synaesthesia (NSS), a rare type of VSMI involving visualised spatial layouts for numbers, does not show an advantage in mental rotation, but shows interference in number line mapping. I next present a study investigating links between NSS and the ability to learn novel numerical symbols. I demonstrate that NSS shows an advantage at learning novel numerals, and that transcranial random noise stimulation, which increases cortical excitability, confers broadly similar advantages that nonetheless differ in subtle ways. I present a study of transcranial alternating current stimulation on the same symbol learning paradigm, which fails to demonstrate effects. Lastly, I present data showing that strength of numerical representation in these newly-learnt symbols is correlated with a measure of mental rotation, and also with visual recognition ability for the symbols after, but not before, training. All together, these findings suggest that VSMI does indeed play a role in numerical cognition, and that it may do so from an early stage of learning symbolic numbers.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:711793
Date January 2014
CreatorsThompson, Jacqueline Marie
ContributorsKadosh, Roi Cohen
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:6f11adba-5ff3-4f3b-b254-fda6ab0ed5a7

Page generated in 0.0015 seconds