Return to search

Lifting Galois Representations in a Conjecture of Figueiredo

In 1987, Jean-Pierre Serre gave a conjecture on the correspondence between degree 2 odd irreducible representations of the absolute Galois group of Q and modular forms. Letting M be an imaginary quadratic field, L.M. Figueiredo gave a related conjecture concerning degree 2 irreducible representations of the absolute Galois group of M and their correspondence to homology classes. He experimentally confirmed his conjecture for three representations arising from PSL(2,3)-polynomials, but only up to a sign because he did not lift them to SL(2,3)-polynomials. In this paper we compute explicit lifts and give further evidence that his conjecture is accurate.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-2400
Date12 June 2008
CreatorsRosengren, Wayne Bennett
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds