Return to search

Bases for Invariant Spaces and Geometric Representation Theory

Let G be a simple algebraic group. Labelled trivalent graphs called webs can be used to produce invariants in tensor products of minuscule representations. For each web, a configuration space of points in the affine Grassmannian is constructed. This configuration space gives a natural way of calculating the invariant vectors coming from webs.

In the case of G = SL_3, non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is CAT(0), is explained by the fact that affine buildings are CAT(0). In the case of G = SL_n, a sufficient condition for a set of webs to yield a basis is given. Using this condition and a generalization of a technique by Westbury, a basis is constructed for SL_n.

Due to the geometric Satake correspondence there exists another natural basis of invariants, the Satake basis. This basis arises from the underlying geometry of the affine Grassmannian. There is an upper unitriangular change of basis from the basis constructed above to the Satake basis. An example is constructed showing that the Satake, web and dual canonical basis of the invariant space are all different.

The natural action of rotation on tensor factors sends invariant space to invariant space. Since the rotation of web is still a web, the set of vectors coming from webs is fixed by this action. The Satake basis is also fixed, and an explicit geometric and combinatorial description of this action is developed.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/34001
Date11 December 2012
CreatorsFontaine, Bruce Laurent
ContributorsKamnitzer, Joel
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds