Return to search

Classification and structure of certain representations of quantum affine algebras = Classificação e estrutura de certas representações de álgebras afim quantizadas / Classificação e estrutura de certas representações de álgebras afim quantizadas

Orientadores: Adriano Adrega de Moura, Evgeny Mukhin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:56:39Z (GMT). No. of bitstreams: 1
Brito_MatheusBatagini_D.pdf: 1928614 bytes, checksum: bd194d09898859744dc51e0bcccd7fa1 (MD5)
Previous issue date: 2015 / Resumo: Estudamos representações de dimensão finita para uma álgebra afim quantizada a partir de dois pontos de vista distintos. Na primeira parte deste trabalho estudamos o limite graduado de uma certa subclasse de representações irredutíveis. Seja V uma representação de dimensão finita para uma álgebra do tipo A e suponha que V é isomorfa ao produto tensorial de uma afinização minimal por partes cujo peso máximo é a soma de distintos pesos fundamentais por módulos de Kirillov--Reshetikhin cujos pesos máximos são o dobro de um peso fundamental. Provamos que V admite limite graduado L e que L é isomorfo a um módulo de Demazure de nível dois bem como ao produto de fusão dos limites graduados de cada um dos supramencionados fatores tensoriais de V. Provamos ainda que, se a álgebra for do tipo clássica (resp. G), o limite graduado das afinizações minimais (regulares) (resp. módulos de Kirillov--Reshetikhin) são isomorfos ao módulos CV para alguma R^+ partição descrita explicitamente. Na segunda parte provamos que um módulo para a álgebra afim quantizada do tipo B e posto n é manso se, e somente se, ele é fino. Em outras palavras, os geradores da subálgebra de Cartan afim são diagonalizáveis se, e somente se, os autoespaços generalizados associados têm dimensão um. Classificamos tais módulos e descrevemos seus respectivos q-caracteres. Em alguns casos, o q-caracter é descrito por super standard Young tableaux do tipo (2n|1) / Abstract: We study finite--dimensional representations for a quantum affine algebra from two different points of view. In the first part of this work we study the graded limit of a certain subclass of irreducible representations. Let V be a finite--dimensional representation for a quantum affine algebra of type A and assume that V is isomorphic to the tensor product of a minimal affinization by parts whose highest weight is a sum of distinct fundamental weights by Kirillov-Reshetkhin modules whose highest weights are twice a fundamental weight. We prove that V admits a graded limit L and that L is isomorphic to a level-two Demazure module as well as to the fusion product of the graded limits of each of the aforementioned tensor factors of V. We also prove that if the quantum affine algebra is of classical type (resp. type G), the graded limit of (regular) minimal affinizations (resp. Kirillov--Reshetkin modules) are isomorphic to CV-modules for some R^+ partition explicitly described. In the second part we show that a module for the quantum affine algebra of type B and rank n is tame if and only if it is thin. In other words, the Cartan currents are diagonalizable if and only if all joint generalized eigenspaces have dimension one. We classify all such modules and describe their q-characters. In some cases, the q-characters are described by super standard Young tableaux of type (2n|1) / Doutorado / Matematica / Doutor em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307020
Date26 August 2018
CreatorsBrito, Matheus Batagini, 1985-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Mukhin, Evgeny, Moura, Adriano Adrega de, 1975-, Bennett, Matthew Lyle, Guerreiro, Marines, Pogorelsky, Bárbara Seelig, Martins, Renato Alessandro
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format102 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds