Return to search

The Complete Structure of Linear and Nonlinear Deformations of Frames on a Hilbert Space

A frame is a possibly linearly dependent set of vectors in a Hilbert space that facilitates the decomposition and reconstruction of vectors. A Parseval frame is a frame that acts as its own dual frame. A Gabor frame comprises all translations and phase modulations of an appropriate window function. We show that the space of all frames on a Hilbert space indexed by a common measure space can be fibrated into orbits under the action of invertible linear deformations and that any maximal set of unitarily inequivalent Parseval frames is a complete set of representatives of the orbits. We show that all such frames are connected by transformations that are linear in the larger Hilbert space of square-integrable functions on the indexing space. We apply our results to frames on finite-dimensional Hilbert spaces and to the discretization of the Gabor frame with a band-limited window function.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4381
Date01 May 2016
CreatorsAgrawal, Devanshu
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0018 seconds