Return to search

Modern Foundations of Light Transport Simulation

Light transport simulation aims at the numerical computation of the propagation of visible electromagnetic energy in macroscopic environments. In this thesis, we develop the foundations for a modern theory of light transport simulation, unveiling the geometric structure of the continuous theory and providing a formulation of computational techniques that furnishes remarkably efficacy with only local information. Utilizing recent results from various communities, we develop the physical and mathematical structure of light transport from Maxwell's equations by studying a lifted representation of electromagnetic theory on the cotangent bundle. At the short wavelength limit, this yields a Hamiltonian description on six-dimensional phase space, with the classical formulation over the space of "positions and directions" resulting from a reduction to the five-dimensional cosphere bundle. We establish the connection between light transport and geometrical optics by a non-canonical Legendre transform, and we derive classical concepts from radiometry, such as radiance and irradiance, by considering measurements of the light energy density. We also show that in idealized environments light transport is a Lie-Poisson system for the group of symplectic diffeomorphisms, unveiling a tantalizing similarity between light transport and fluid dynamics. Using Stone's theorem, we also derive a functional analytic description of light transport. This bridges the gap to existing formulations in the literature and naturally leads to computational questions. We then address one of the central challenges for light transport simulation in everyday environments with scattering surfaces: how are efficient computations possible when the light energy density can only be evaluated pointwise? Using biorthogonal and possibly overcomplete bases formed by reproducing kernel functions, we develop a comprehensive theory for computational techniques that are restricted to pointwise information, subsuming for example sampling theorems, interpolation formulas, quadrature rules, density estimation schemes, and Monte Carlo integration. The use of overcomplete representations makes us thereby robust to imperfect information, as is often unavoidable in practical applications, and numerical optimization of the sampling locations leads to close to optimal techniques, providing performance which considerably improves over the state of the art in the literature.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/32808
Date31 August 2012
CreatorsLessig, Christian
ContributorsFiume, Eugene
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds