Little is known about the mechanism of virus disease resistance in plants. The aim of the work presented here was to answer whether disease resistance is offered within the cell or at the level of intercellular movement of the virus. The protoplast system was used for this purpose. Conditions were optimized to isolate viable protoplasts from the leaves of Lactuca sativa cultivars. Protoplasts and leaves from resistant and susceptible Lactuca sativa cultivars were inoculated separately with turnip mosaic virus (TuMV) and lettuce mosaic virus (LMV), Virus multiplication was examined over time using enzyme-linked immunosorbent assay. Resistant cv. Kordaat did not support TuMV multiplication in protoplasts as well as in leaves. The results indicated that resistance to TuMV is available within the cell. The results ruled out the possibility of involvement of cell to cell movement and resistance to TuMV seems to be constitutive. On the other hand, protoplasts and leaves from both resistant and susceptible lettuce cultivars supported LMV multiplication. This suggested that resistance to LMV may not be offered within the cell. The results also indicated that the resistance to LMV was partly due to a hypersensitive response though virus was still able to spread systemically. To contribute towards mapping of the Tu resistance gene, the genotype of F$ sb2$ individuals was determined by screening an F$ sb3$ population from 71 F$ sb2$ individuals of a cross between cv. Calmar and cv. Kordaat for TuMV-infection. These data were useful for the production of bulks around the Tu locus to facilitate the search for new molecular markers linked to the Tu gene.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.55529 |
Date | January 1994 |
Creators | Singh, Rampal |
Contributors | Fortin, Marc G. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Plant Science.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001432943, proquestno: AAIMM00057, Theses scanned by UMI/ProQuest. |
Page generated in 0.0024 seconds