Return to search

Monolithic Continuous Wave Single Mode Ytterbium Fiber Laser Emitting at 1064 Nanometers

A ytterbium fiber laser emitting 60 watts of power at 1064 nm has been designed, fabricated, and tested. The laser has an 83% optical efficiency at this power level, ~ 10% under that predicted by the quantum defect. Typical continuous wave nonlinearities have not been detected in the laser’s output characteristics. Additionally, amplified spontaneous emission at 1030 nm has not occurred at an observable level within the laser’s spectral output. Other deleterious effects on high-power laser operation are discussed.
The spectral output has precisely controlled spectral characteristics enabled by the use of fiber Bragg gratings as cavity mirrors. Additional spectral peaks are observed in the output of the resonator. The probable cause of the unexpected spectral features is parasitic lasing from Fabry Perot effects between the output facet of the fiber and the high reflectivity Fiber Bragg Grating. The future addition of an endcap will enable this system to generate greater than a kilowatt of output power while eliminating spectral abnormalities.
Challenges during construction related to splicing and the results of the implemented improvements are documented. Unmanageable thermal complications with fusion splicing required the refinement of splicing, decontamination, and cleaving protocols. Standard splice functionality was ultimately regained, and assembly of the laser was continued.
This laser is expected to be deployed at the Townes Institute Science and Technology Experimentation Facility (TISTEF) upon completion of the kilowatt power build. Beam shaping characterization studies will be performed upon laser delivery. Emphasis will be placed on interactions between nondiffracting beams and atmospheric turbulence.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1432
Date01 January 2024
CreatorsSiver, Melissa K
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024

Page generated in 0.0018 seconds