Statistical research can be more difficult to plan than other kinds of projects, since the research must adapt as knowledge is gained. This dissertation establishes a formal language and methodology for designing experimental research strategies with limited resources. It is a mathematically rigorous extension of a sequential and adaptive form of statistical research called response surface methodology. It uses sponsor-given information, conditions, and resource constraints to decompose an overall project into individual stages. At each stage, a "parent" decision-maker determines what design of experimentation to do for its stage of research, and adapts to the feedback from that research's potential "children", each of whom deal with a different possible state of knowledge resulting from the experimentation of the "parent". The research of this dissertation extends the real-world rigor of the statistical field of design of experiments to develop an deterministic, adaptive algorithm that produces deterministically generated, reproducible, testable, defendable, adaptive, resource-constrained multi-stage experimental schedules without having to spend physical resource.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-2620 |
Date | 04 March 2014 |
Creators | Miller, Michael Chad |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0048 seconds