Nesta dissertação é apresentada uma nova metodologia para tratar o problema de restabelecimento de energia em Sistemas de Distribuição (SD) de grande porte, possibilitando a obtenção de planos de restabelecimento a partir exclusivamente de chaves automáticas após a ocorrência de faltas permanentes. Este procedimento é realizado através da Reconfiguração de Redes (RR), que consiste basicamente na alteração da topologia do sistema elétrico através da mudança de estados (aberto/fechado) das chaves seccionadoras. Para isso, vários pontos de carga do SD são agrupados em blocos separados por chaves, formando setores. Assim, a partir da RR é possível a troca de cargas entre alimentadores em caso de interrupção em algum ponto da rede. A metodologia aqui proposta divide o processo de restabelecimento de energia em duas etapas. Na primeira a troca de cargas entre alimentadores é realizada utilizando apenas chaves automáticas, e a segunda etapa utiliza-se qualquer tipo de chave, automática ou não. O problema de restabelecimento de energia em SDs de grande porte envolve múltiplos objetivos, e alguns deles são conflitantes, além disto, devido à grande quantidade de variáveis envolvidas nesse problema, ele está sujeito ao fenômeno de explosão combinatória. Dessa forma, metas-heurísticas têm sido propostas como alternativas para tratar o problema, e dentre essas, os Algoritmos Evolutivos (AEs) têm se mostrado a mais eficiente. Face ao exposto, neste trabalho de mestrado utiliza-se de um AE Multi-Objetivo, juntamente com a estrutura de dados denominada Representação Nó-Profundidade (RNP), que permite uma representação computacional eficiente da topologia elétrica dos SDs. Para validar a metodologia proposta foram realizadas simulações computacionais no SD real da cidade de Londrina-PR, em atual operação. Os resultados que serão apresentados nessa dissertação mostraram um ganho substancial em comparação com outra metodologia. / This dissertation presents a new methodology to address service restoration problem in Large Scale Distribution Systems (DS), that allow the obtaining of service restoration plans considering only automatic switches after the occurrence of interruption. This procedure is performed through the Network Reconfiguration (NR), which basically consists in changing the topology of the electrical system by changing states (open/closed) of the switches. For this, various load points DS are grouped into blocks separated by switches, forming sectors. Thus, from the NR is possible to exchange charges between feeders in case of interruption somewhere in the DS. The methodology proposed here divides the process of service restoration in two stages. The first exchange of charges between feeders is performed using only automatic switches, and the second stage uses any type of switches, automatic or not. The problem of service restoration in Large-Scale DS involves multiple objectives, some of which are conflicting, moreover, due to the large number of variables involved in this problem, it is subject to the combinatorial explosion phenomenon. Thus, meta-heuristics have been proposed as alternatives to address the problem, and among these, the Evolutionary Algorithms (EAs) have shown to be more efficient. Given the above, this work uses Multi-Objective Evolutionary Algorithms, along with the graph encoding called Node-Depth Representation, which allows an efficient computational representation of DS topology. To validate the proposed methodology were performed computer simulations in real DS city of Londrina, in actual operation. The results will be presented in this thesis showed a substantial gain compared to other methods.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22102013-155524 |
Date | 30 September 2013 |
Creators | Borges, Henrique Fernandes |
Contributors | London Junior, João Bosco Augusto |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0016 seconds