Lung cancer is the most common cause of cancer-related mortality worldwide with current treatments providing limited therapeutic benefit in most cases. TP53 (Trp53, p53) mutations occur in approximately 50% of lung adenocarcinoma cases and are associated with poor prognosis and so novel therapies that target these p53 mutant lung tumours are urgently needed. Despite the high frequency of p53 mutations in lung tumours, the impact these mutations have on response to therapy remains unclear in this cancer type. The aim of my project is to characterise the gain-of-function and dominant-negative effects of p53 mutations in lung tumours and to identify ways of therapeutically targeting these p53 mutant tumours based on dependencies and susceptibilities that our analysis uncovers. To characterise the gain-of-function and dominant-negative effects of p53 mutations I compared p53 mutant murine lung tumour cells that endogenously express either a contact (R270H, equivalent to R273H in humans) or conformational (R172H, equivalent to R175H in humans) p53 mutant protein and p53 null lung tumour cell lines; both in the presence and absence of wild-type p53. Interestingly, transcriptional and functional analysis uncovered metabolic gain-of-functions that are specific to the type of p53 mutation. Upregulation of mevalonate pathway expression was observed only in R270H lung tumours and consequently R172H and R270H lung tumours displayed distinct sensitivities to simvastatin, a mevalonate pathway inhibitor widely used in the clinic. Furthermore, the transcriptional signature underlying this sensitivity to simvastatin was also present in human lung tumours with contact p53 mutations, indicating that these findings may be clinically relevant. On the other hand, our analysis of the potential dominant-negative effects of the p53 mutants on wild-type p53 demonstrated that wild-type p53 was able to induce typical p53 target genes to a similar level in p53 null and mutant cells. Furthermore, wild-type p53 restoration resulted in comparable tumour suppressive responses in p53 mutant and null tumours and thus, p53-restoration therapy will likely be of benefit to patients with p53 mutations in lung cancer. Hence, I have demonstrated that lung tumours harbouring contact and conformational p53 mutations display common and distinct therapeutic susceptibilities.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:744521 |
Date | January 2018 |
Creators | Turrell, Frances Kathryn |
Contributors | Martins, Carla |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/271848 |
Page generated in 0.002 seconds