An in vitro phagocytosis assay system was developed and characterized for studying the specific receptor-mediated phagocytosis of bovine ROS by bovine RPE cells. The phagocytosis of ROS was detected qualitatively by electron microscopy and quantitatively by treating RPE cells with radioiodinated ROS or by probing ROS-treated RPE cells with a radiolabeled antirhodopsin monoclonal antibody.
The binding sites for various antirhodopsin monoclonal antibodies were localized as an essential step in their application as immunochemical probes for analysis of the structure and function of rhodopsin. Five monoclonal antibodies raised against rhodopsin have been shown to be directed against the N-terminal regions on the basis of their reactivity to an immunoaffinity purified 2-39 glycopeptide, a 2-16 tryptic glycopeptide and a 1-16 synthetic peptide as measured by radioimmune competition assays. Limited proteolysis, immunogold-dextran labeling and competitive inhibition studies identified two antirhodopsin monoclonal antibodies which bound to internal cytoplasmic loop regions of rhodopsin. Finally, the binding sites for these and other C-terminal specific antirhodopsin monoclonal antibodies were used to elucidate the proposed transmembrane helical model of rhodopsin.
An antirhodopsin monoclonal antibody (rho 4D2), which bound to rhodopsin
in glutaraldehyde-fixed ROS plasma membranes, was employed as an
immunocytochemical probe in studying the possible role of rhodopsin in the
binding and phagocytosis of rod outer segments. An immunoaffinity purified
2-39 N-terminal rhodopsin glycopeptide, a synthetic 1-16 peptide analogue of
rhodopsin and phospholipid vesicles reconstituted with rhodopsin were all
found to be ineffective in inhibiting the phagocytosis of ¹²⁵I-labeled ROS by RPE cells. In essence, these results provided compelling evidence that rhodopsin in the ROS plasma membrane does not function as the ligand for recognition by RPE cells.
The molecular properties of the ROS cell surface ligand(s), which are involved in recognition by bovine RPE cells, were studied by limited-proteolytic digestion in conjunction with quantitative phagocytosis assays. Mildly trypsin-treated ROS were found to be less effectively phagocytized than untreated ROS by bovine RPE cells. Moreover, the glycopolypeptides (34kD and 24kD) released from the ROS cell surface by trypsin were capable of inhibiting ROS phagocytosis. The ROS plasma membrane specific, ricin-binding, 230kD glycoprotein was observed by SDS-gel electrophoresis and western blotting to be highly trypsin sensitive under these conditions. Hence, ricin affinity chromatography and immunoaffinity chromatography were employed in an attempt to purify this 230kD glycoprotein from ROS membranes. Enriched preparations of the 230kD glycoprotein were reconstituted into phospholipid vesicles and effectively used to inhibit the phagocytosis of ROS by RPE cells. In summary, a ROS plasma membrane specific, 230kD glycoprotein has been identified and isolated; this protein may act as a ligand in specific ligand-receptor interactions between ROS and RPE cells. / Medicine, Faculty of / Biochemistry and Molecular Biology, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/28850 |
Date | January 1988 |
Creators | Laird, Dale W. |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0021 seconds