(+)-Neopeltolide is a highly potent marine polyketide natural product with activity against multiple cancer cell lines in vitro. The nanomolar range of antifungal and anticancer cytotoxicity in this tetrahydropyran (THP)-containing polyketide, combined with its limited natural supply, has led to several syntheses. In this study, the feasibility of an oxa-Michael conjugate addition route to cis-2,6-THP rings is examined through the efforts toward a total synthesis of the macrocyclic core of (+)-neopeltolide using a highly convergent route. This study is based on the successful preliminary results with a simple 14-member ring model system and the synthesis of the key aldehyde intermediate shown below. The highlighted transformation of this synthesis will be a transannular oxa-conjugate addition to generate the cis-2,6-tetrahydropyran ring system. This route also highlights a highly convergent Wittig coupling to generate the full carbon framework of (+)-neopeltolide. One of the key goals of this project is to compare this synthesis with a chemo-enzymatic total synthesis that relies on chemistry catalyzed by polyketide synthase enzymes in the late stage of the synthesis.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./23125 |
Date | 31 July 2012 |
Creators | Hari, Taylor P.A. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0019 seconds