Dans cette thèse, nous abordons le problème de l'analyse des sentiments. Plus précisément, nous sommes intéressés à analyser le sentiment exprimé dans les textes de médias sociaux.Nous allons nous concentrer sur deux tâches principales: la détection de polarité de sentiment dans laquelle nous cherchons à déterminer la polarité (positive, négative ou neutre) d'un texte donné et l'extraction de cibles d’opinion et le sentiment exprimé vers ces cibles (par exemple, pour le restaurant nous allons extraire des cibles comme la nourriture, pizza, service). Notre principal objectif est de construire des systèmes à la pointe de la technologie qui pourrait faire les deux tâches. Par conséquent, nous avons proposé des systèmes supervisés différents suivants trois axes de recherche: l'amélioration de la performance du système par la pondération de termes, en enrichissant de la représentation de documents et en proposant un nouveau modèle pour la classification de sentiment.Pour l'évaluation, nous avons participé à un atelier international sur l'évaluation sémantique (Sem Eval), nous avons choisi deux tâches: l'analyse du sentiment sur Twitter dans laquelle nous déterminer la polarité d'un tweet et l'analyse des sentiments basée sur l’aspect dans laquelle nous extrayons les cibles d'opinion dans les critiques de restaurants, puis nous déterminons la polarité de chaque cible, nos systèmes ont été classés parmi les premiers trois meilleurs systèmes dans toutes les sous-tâches. Nous avons également appliqué nos systèmes sur un corpus des critiques de livres français construit par l'équipe Open Edition pour extraire les cibles d'opinion et leurs polarités. / In this thesis, we address the problem of sentiment analysis. More specifically, we are interested in analyzing the sentiment expressed in social media texts such as tweets or customer reviews about restaurant, laptop, hotel or the scholarly book reviews written by experts. We focus on two main tasks: sentiment polarity detection in which we aim to determine the polarity (positive, negative or neutral) of a given text and the opinion target extraction in which we aim to extract the targets that the people tend to express their opinions towards them (e.g. for restaurant we may extract targets as food, pizza, service).Our main objective is constructing state-of-the-art systems which could do the two tasks. Therefore, we have proposed different supervised systems following three research directions: improving the system performance by term weighting, by enriching the document representation and by proposing a new model for sentiment classification. For evaluation purpose, we have participated at an International Workshop on Semantic Evaluation (SemEval), we have chosen two tasks: Sentiment analysis in twitter in which we determine the polarity of a tweet and Aspect-Based sentiment analysis in which we extract the opinion targets in restaurant reviews, then we determine the polarity of each target. Our systems have been among the first three best systems in all subtasks. We also applied our systems on a French book reviews corpus constructed by OpenEdition team for extracting the opinion targets and their polarities.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4356 |
Date | 01 December 2015 |
Creators | Hamdan, Hussam |
Contributors | Aix-Marseille, Bellot, Patrice, Béchet, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds