Return to search

Micro Electro Mechanical Systems Integrated Frequency Reconfigurable Antennas for Public Safety Applications

This thesis work builds on the concept of reconfiguring the antenna properties (frequency, polarization, radiation pattern) using Radio Frequency (RF) Micro Electro Mechanical Systems (MEMS). This is a part of the overall research performed at the RF Micro/Nano Electro Mechanical Systems (uNeMS) Laboratory at Utah State University, which includes design, microfabrication, test, and characterization of uNeMS integrated cognitive wireless communication systems (Appendix A).
In the first step, a compact and broadband Planar Inverted F Antenna (PIFA) is designed with a goal to accommodate reconfigurability at a later stage. Then, a Frequency Reconfigurable Antenna (FRA) is designed using MEMS switches to switch between the Public Safety (PS) bands, 152-162 MHz and 406-512 MHz, while maintaining the integrity of radiation pattern for each band. Finally, robust mechanical designs of the RF MEMS switches accompanied by different analyses have been performed. These analyses are instrumental in obtaining high yield, reliable, robust microfabrication processes including thin film metal deposition and patterning.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1740
Date01 May 2010
CreatorsMopidevi, Hema Swaroop
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0027 seconds