Return to search

Bond behavior of cement-based repair materials under freeze-thaw and cyclic loading conditions

According to the 2019 Canadian infrastructure report card, a concerning amount of municipal infrastructure is in poor or very poor condition. The infrastructure in this condition requires immediate action for rehabilitation or replacement. For concrete infrastructure, an effective repair can extend its service life and ensure that the services it provides continue to meet the community expectations. However, unfavorable environmental factors such as repeated/cyclic loads and freezing and thawing cycles adversely affect the bond between substrate concrete and repair materials, which lowers the structural capacity of repaired structures. So far, researchers have found that bond strength of repair can be affected by surface roughness, surface moisture, chemical adhesion or cohesion, curing regime, properties of substrate and repair materials, use of bond agent, and curing regimes. These findings are mostly based on the studies that focused on cold-jointed cylinders or beams, but in real-life repair situations, repairs of beams or slabs are located at either tension or compression side of the structure. Currently, there is no comprehensive study that investigates the bond of concrete repair under a combination of freezing and thawing and repeated/cyclic loading conditions. In addition, it is challenging to provide a rapid and non-destructive evaluation of the bond deterioration of repair materials.


To address these issues systematically, this dissertation breaks the task into four phases. Phase (I) focuses on the development of an engineered “crack-free” repair mix that contains polypropylene (PP) fiber. A novel method is used to surface treat the PP fibers with supplementary cementitious materials. The effectiveness of surface-treating fibers for improved bond strength and reduced cracking is investigated. The compressive, tensile, and flexural strength of this engineered repair mix are determined and compared with two commercially available repair materials.


The results from Phase I show that by adding 0.2% (by weight) Metakaolin-treated fibers into concrete mix, the compressive strength improves by up to 15.7% compared to mixes with untreated fibers. This study achieved a strength increase of 13.5% as compared to the reported 3.3% in other studies that use 25 times the amount of metakaolin used in this study. The experimental results confirm that at 0.2% dosage level, the use of novel surface treating technique is a cost-effective way to improve the strength of repair materials.


Phase (II) focuses on characterizing the bond strength of various repair systems after freezing-thawing (FT) damage using both non-destructive and destructive methods. Two innovative sounding methods, which overcome the subjectivity of the traditional chain drag method, are used to evaluate FT damage non-destructively. In the experimental study, beams with a U-shaped cut are made to simulate conditions experienced by a concrete structure during a typical repair project. Three types of repair materials are used including cementitious repair concrete, cementitious repair mortar, and polymer-modified cementitious mortar. After up to 300 cycles of freeze-thaw exposure, resonant frequency and bond flexural strength of the prismatic specimens are determined. The empirical equations relating Non-destructive test (NDT) measurements and flexural bond strength of the repaired structures after freeze-thaw (FT) exposure are proposed.

The results from Phase II show that the change in dynamic modulus of elasticity determined from NDTs agrees well with the change in other measurements including flexural bond strength, interfacial crack width, and mass loss after freeze-thaw exposure. In this study, linear relationships are established between dynamic modulus of elasticity and flexural bond strength for both cementitious and polymer-modified cementitious repair mortar with a coefficient of determination ranging between 0.87 and 0.95. The proposed empirical models can be used to predict bond flexural strength of repaired structures based on NDT measurement. Also, it was found that the samples repaired with polymer-modified cementitious mortar (Mix P) have superior FT resistance compared to other repaired samples.


Phase (III) focuses on investigating the structural capacity and bond performance of repaired beams after cyclic/repeated loading. To accelerate the test process, a novel modified loading regime consisting of cycle groups of increasing cyclic/repeated stress amplitude is proposed. The models proposed by literature and current codes and standards are used to validate the results. Phase (IV) focuses on the development of the damage models for both individual and combined FT and cyclic loading exposure on repaired concrete structures.


The results in phase III show the feasibility of using the Palmgren-Miner rule and Goodman linear model to estimate the fatigue life of repaired structures. This was confirmed within the context of this study. This study established the usefulness of using groups of increasing cyclic stress amplitude to accelerate the fatigue test process. The two-million cycle fatigue endurance limit estimated using cycle groups of Mix S (70.8%) was very similar to what was reported in the literature (71%) using the traditional time-consuming cyclic loading method. This study found that the formulas proposed by CSA 23.3 can effectively predict the moment resistance of both intact (control) and repaired RC beams. The ratio of experimental moment resistance values to its predictions ranges from 0.91 to 1.04. Based on the experimental results of previous three phases, an empirical model that predicted the fatigue service life of FT-damaged concrete structures is proposed.


Future research requires a more comprehensive study on the FT performance of various polymer-modified cementitious mortars of different mix designs in repairing concrete structures. By increasing the number of tested specimens, a better relationship could be established between destructive and NDT methods. Future research is also required to explore the combined effect of FT and cyclic loading on repaired RC structures experimentally. / Graduate / 2023-03-22

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/13869
Date22 April 2022
CreatorsWang, Boyu
ContributorsGupta, Rishi
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.0688 seconds