Visual object tracking is a classical and very popular problem in computer vision
with a plethora of applications such as vehicle navigation, human computer interface, human motion analysis, surveillance, auto-control systems and many more. Given the initial state of a target in the first frame, the goal of tracking is to predict states of the target over time where the states describe a bounding box covering the target. Despite numerous object tracking methods that have been proposed in recent years [1-4], most of these trackers suffer a degradation in performance mainly because of several challenges that include illumination changes, motion blur, complex motion, out of plane rotation, and partial or full occlusion, while occlusion is usually the most contributing factor in degrading the majority of trackers, if not all of them. This thesis is devoted to the advancement of generic object trackers tackling different challenges through different proposed methods. The work presented propose four
new state-of-the-art trackers. One of which is 3D based tracker in a particle filter framework where both synchronization and registration of RGB and depth streams are adjusted automatically, and three works in correlation filters that achieve state-of-the-art performance in terms of accuracy while maintaining reasonable speeds.
Identifer | oai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/609455 |
Date | 04 1900 |
Creators | Bibi, Adel |
Contributors | Ghanem, Bernard, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Al-Naffouri, Tareq Y., Heidrich, Wolfgang |
Source Sets | King Abdullah University of Science and Technology |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | 2017-05-15, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2017-05-15. |
Page generated in 0.0018 seconds