Return to search

Curcumin analogues as ligands for Re (I) and (V)

Coordination properties of 4-bromo-N-(diethylcarbamothioyl)benzamide (Hbeb) and 4-bromo-N-(diphenylcarbamothioyl)benzamide (Hbpb) with oxorhenium(V) and rhenium(I) are reported and discussed. Transition metal complexes of these ligands were studied due to the wide range of applications of thiourea derivatives in biological fields. N-[Di(alkyl/aryl)carbamothioyl]benzamide derivatives readily coordinate to metal ions as O,S-donors and the catalytic property of the complexes can be altered by these ligands, due to steric and electronic properties provided by various substituents. The coordination possibilities of curcumin with rhenium(V) are discussed, as well as the difficulties encountered. Analogues of curcumin have been made, which also contains a seven-spacer unit between the phenyl rings, which would be more reactive and more effective in bonding to rhenium and which have greater or a similar biological activity to curcumin. This was done by assessing the coordination properties of 1,5-bis(salicylidene)thiocarbohydrazide (H4salt) and 2,4-bis(vanilidene)thiocarbohydrazide (H4vant) with oxorhenium(V) and rhenium(I) starting materials. Two rhenium(V) complex salts of the core [ReX(PPh3)2]4+ (X = Br, I), containing a coordinated imido nitrogen, are reported. One is a ‘2+1’ complex, coordinating bi- and monodentately, with the other a similar ‘3+0’ complex containing a tridentate imido-coordinated Schiff base. Selected compounds were tested against oesophageal cancer cell lines in order to evaluate and compare their effectiveness in eliminating or reducing the cancer cells in the test medium during biological testing.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10443
Date January 2012
CreatorsSchmitt, Bonell
ContributorsGerber, T I A
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatvi, 129 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0021 seconds