Advanced computational methods for the analysis of building structures are used more often in engineering practice. Their use is enforced not only by the demands for aesthetics, functionality and high economy of the construction, but often directly by code provisions and requirements. Therefore, it is necessary to provide for an engineer the robust, but transparent tool, which can be used for an efficient design of structure all over it's design working life. This work deals with the creation of a computational system for time dependent analysis of concrete and composite structures. It is assumed a solid or composite concrete section with possible application of pre-tensioned and/or post-tensioned tendons. Each phase of step-by-step build composite cross-section has a general geometry. The used algorithms give us the possibility of a detailed analysis of the structure in individual construction stages, provide the designer better view on the behavior of structures with respect to concrete aging, shrinkage and creep, relaxation of prestressed tendons and provide an information on the redistribution of internal forces in the structure and in different phases of the cross-section. Stress state of the structure calculated in this way come in useful further in the design and checking of ultimate and serviceability limit states. Results of time dependent analysis are verified by manual calculations and by comparing with the results obtained by simplified methods.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234544 |
Date | January 2015 |
Creators | Hron, Lukáš |
Contributors | Kulhavý,, Tomáš, Čajka,, Radim, Vráblík,, Lukáš, Navrátil, Jaroslav |
Publisher | Vysoké učení technické v Brně. Fakulta stavební |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds